.. _publications-chapter: dfnWorks Publications ====================== The following are publications that use *dfnWorks*: #. `\J. D. Hyman, C. W. Gable, S. L. Painter, and N. Makedonska. Conforming Delaunay triangulation of stochastically generated three dimensional discrete fracture networks: A feature rejection algorithm for meshing strategy. SIAM J. Sci. Comput., 36(4):A1871–A1894, 2014 `_. #. `\R.S. Middleton, J.W. Carey, R.P. Currier, J. D. Hyman, Q. Kang, S. Karra, J. Jimenez-Martınez, M.L. Porter, and H.S. Viswanathan. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Applied Energy, 147:500–509, 2015 `_. #. `\J. D. Hyman, S. L. Painter, H. Viswanathan, N. Makedonska, and S. Karra. Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks. Water Resources Research, 51(9):7289–7308, 2015 `_. #. `\S. Karra, Nataliia Makedonska, Hari S Viswanathan, Scott L Painter, and Jeffrey D. Hyman. Effect of advective flow in fractures and matrix diffusion on natural gas production. Water Resources Research, 51(10):8646–8657, 2015 `_. #. `\J. D. Hyman, S. Karra, N. Makedonska, C. W Gable, S. L Painter, and H. S Viswanathan. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport. Computers & Geosciences, 84:10–19, 2015 `_. #. `\H. S. Viswanathan, J. D. Hyman, S. Karra, J.W. Carey, M. L. Porter, E. Rougier, R. P. Currier,Q. Kang, L. Zhou, J. Jimenez-Martınez, N. Makedonska, L. Chen, and R. S. Middleton. Using Discovery Science To Increase Efficiency of Hydraulic Fracturing While Reducing Water Usage, chapter 4, pages 71–88. ACS Publications, 2016 `_. #. `\N. Makedonska, S. L Painter, Q. M Bui, C. W Gable, and S. Karra. Particle tracking approach for transport in three-dimensional discrete fracture networks. Computational Geosciences, 19(5):1123–1137, 2015 `_. #. `\D. O’Malley, S. Karra, R. P. Currier, N. Makedonska, J. D. Hyman, and H. S. Viswanathan. Where does water go during hydraulic fracturing? Groundwater, 54(4):488–497, 2016 `_. #. `\J. D. Hyman, J Jiménez-Martínez, HS Viswanathan, JW Carey, ML Porter, E Rougier, S Karra, Q Kang, L Frash, L Chen, et al. Understanding hydraulic fracturing: a multi-scale problem. Phil. Trans. R. Soc. A, 374(2078):20150426, 2016 `_. #. `\G. Aldrich, J. D. Hyman, S. Karra, C. W. Gable, N. Makedonska, H. Viswanathan, J.Woodring, and B. Hamann. Analysis and visualization of discrete fracture networks using a flow topology graph. IEEE Transactions on Visualization and Computer Graphics, 23(8):1896–1909, Aug 2017 `_. #. `\N. Makedonska, J. D. Hyman, S. Karra, S. L. Painter, C.W. Gable, and H. S. Viswanathan. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks. Advances in Water Resources, 94:486 – 497, 2016 `_. #. `\J. D. Hyman, G. Aldrich, H. Viswanathan, N. Makedonska, and S. Karra. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size. Water Resources Research, 2016 `_. #. `\H. Djidjev, D. O’Malley, H. Viswanathan, J. D. Hyman, S. Karra, and G. Srinivasan. Learning on graphs for predictions of fracture propagation, flow and transport. In 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 1532–1539, May 2017 `_. #. `\J. D. Hyman, A. Hagberg, G. Srinivasan, J. Mohd-Yusof, and H. Viswanathan. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions. Phys. Rev. E, 96:013304, Jul `_. #. `\T Hadgu, S. Karra, N. Makedonska, J. D. Hyman, K. Klise, H. S. Viswanathan, and Y.Wang. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock. J. Hydrology, 2017 `_. #. `\V. Romano, J. D. Hyman, S. Karra, A. J. Valocchi, M. Battaglia, and S. Bigi. Numerical modeling of fluid flow in a fault zone: a case of study from majella mountain (Italy). Energy Procedia, 125:556 – 560, 2017 `_. #. `\M. Valera, Z. Guo, P. Kelly, S. Matz, A. Cantu, A.G. Percus, J. D. Hyman, G. Srinivasan, and H.S. Viswanathan. Machine learning for graph-based representations of three-dimensional discrete fracture networks. Computational Geosciences, 2018 `_. #. `\M. K. Mudunuru, S. Karra, N. Makedonska, and T. Chen. Sequential geophysical and flow inversion to characterize fracture networks in subsurface systems. Statistical Analysis and Data Mining: The ASA Data Science Journal, 10(5):326–342, 2017 `_. #. `\J. D. Hyman, Satish Karra, J. William Carey, Carl W. Gable, Hari Viswanathan, Esteban Rougier, and Zhou Lei. Discontinuities in effective permeability due to fracture percolation. Mechanics of Materials, 119:25 – 33, 2018 `_. #. `\S. Karra, D. O’Malley, J. D. Hyman, H.S. Viswanathan, and G. Srinivasan. Modeling flow and transport in fracture networks using graphs. Phys. Rev. E, 2018 `_. #. `\J. D. Hyman and J. Jimenéz-Martínez. Dispersion and mixing in three-dimensional discrete fracture networks: Nonlinear interplay between structural and hydraulic heterogeneity. Water Resources Research, 54(5):3243–3258, 2018 `_. #. `\D. O’Malley, S. Karra, J. D. Hyman, H. Viswanathan, and G. Srinivasan. Efficient Monte Carlo with graph-based subsurface flow and transport models. Water Resour. Res., 2018 `_. #. `\G. Srinivasan, J. D. Hyman, D. Osthus, B. Moore, D. O’Malley, S. Karra, E Rougier, A. Hagberg, A. Hunter, and H. S. Viswanathan. Quantifying topological uncertainty in fractured systems using graph theory and machine learning. Scientific Reports, 2018 `_. #. `\H. S. Viswanathan, J. D. Hyman, S. Karra, D. O’Malley, S. Srinivasan, A. Hagberg, and G. Srinivasan. Advancing graph-based algorithms for predicting flow and transport in fractured rock. Water Resour. Res., 2018 `_. #. `\S. Srinivasan, J. D. Hyman, S. Karra, D. O’Malley, H. Viswanathan, and G. Srinivasan. Robust system size reduction of discrete fracture networks: A multi-fidelity method that preserves transport characteristics. Computational Geosciences, 2018 `_. #. `\J. D. Hyman, Aric Hagberg, Dave Osthus, Shriram Srinivasan, Hari Viswanathan, and Gowri Srinivasan. Identifying backbones in three-dimensional discrete fracture net- works: A bipartite graph-based approach. Multiscale Modeling & Simulation, 16(4):1948– 1968, 2018 `_. #. `\G. Aldrich, J. Lukasczyk, J. D. Hyman, G. Srinivasan, H. Viswanathan, C. Garth, H. Leitte, J. Ahrens, and B. Hamann. A query-based framework for searching, sorting, and exploring data ensembles. Computing in Science Engineering, 2018 `_. #. `\T. Sherman, J. D. Hyman, D. Bolster, N. Makedonska, and G. Srinivasan. Characterizing the impact of particle behavior at fracture intersections in three-dimensional discrete fracture networks. Physical Review E, 99(1):013110, 2019 `_. #. `\J. D. Hyman, M. Dentz, A. Hagberg, and P. Kang. Linking structural and transport properties in three-dimensional fracture networks. J. Geophys. Res. Sol. Ea., 2019 `_. #. `\S. Srinivasan, S. Karra, J. D. Hyman, H. Viswanathan, and G. Srinivasan. Model reduction for fractured porous media: A machine-learning approach for identifying main flow pathways. Computational Geosciences, 2018 `_. #. `\N. Makedonska, J.D, Hyman, E. Kwicklis, K. Birdsell, Conference Proceedings, Discrete Fracture Network Modeling and Simulation of Subsurface Transport for the Topopah Spring Aquifer at Pahute Mesa, 2nd International Discrete Fracture Network Engineering, 2018. `_. #. `\N. Makedonska, C.W. Gable, R. Pawar, Conference Proceedings, Merging Discrete Fracture Network Meshes With 3D Continuum Meshes of Rock Matrix: A Novel Approach, 2nd International Discrete Fracture Network Engineering, 2018. `_. #. `\A. Frampton, J.D, Hyman, L. Zou, Advective transport in discrete fracture networks with connected and disconnected textures representing internal aperture variability, Water Resources Research. 2019 `_. #. `\J.D. Hyman, J. Jiménez-Martínez, C. W. Gable, P. H. Stauffer, and R. J. Pawar. Characterizing the Impact of Fractured Caprock Heterogeneity on Supercritical CO2 Injection. Transport in Porous Media: 2019. `_. #. `\J.D. Hyman, H. Rajaram, S. Srinivasan, N. Makedonska, S. Karra, H. Viswanathan, H., & G. Srinivasan, (2019). Matrix diffusion in fractured media: New insights into power law scaling of breakthrough curves. Geophysical Research Letters, 46. 2019 `_. #. `\J.D. Hyman, M. Dentz, A. Hagberg, & P. K. Kang, (2019). Emergence of Stable Laws for First Passage Times in Three-Dimensional Random Fracture Networks. Physical Review Letters, 123. 248501 `_. #. `\M. R. Sweeney, C. W. Gable, S. Karra, P. H. Stauffer, R. J. Pawar, J. D. Hyman (2019). Upscaled discrete fracture matrix model (UDFM): an octree-refined continuum representation of fractured porous mediaComputational Geosciences 2019 `_. #. `\T. Sherman, J. D. Hyman, M. Dentz, and D. Bolster. Characterizing the influence of fracture density on network scale transport. J. Geophys. Res. Sol. Ea., 2019 `_. #. `\D. Osthus, J. D. Hyman, S. Karra, N. Panda, and G. Srinivasan. A probabilistic clustering approach for identifying primary subnetworks of discrete fracture networks with quantified uncertainty. SIAM/ASA Journal on Uncertainty Quantification, 2020 8(2), pp.573-600. `_. #. `\V. Romano, S. Bigi, F. Carnevale, J. D. Hyman, S. Karra, A. Valocchi, M. Tartarello, and M. Battaglia. Hydraulic characterization of a fault zone from fracture distribution. Journal of Structural Geology, 2020 `_. #. `\S. Srinivasan, E. Cawi, J. D. Hyman, D. Osthus, A. Hagberg, H. Viswanathan, and G. Srinivasan. Physics-informed machine-learning for backbone identification in discrete fracture networks. Comput. Geosci., 2020 `_. #. `\N. Makedonska, S. Karra, H.S. Viswanathan, and G.D. Guthrie,. Role of Interaction between Hydraulic and Natural Fractures on Production. Journal of Natural Gas Science and Engineering 2020, p.103451. `_. #. `\H. Pham, R. Parashar, N. Sund, and K. Pohlmann. A Method to Represent a Well in a Three‐dimensional Discrete Fracture Network Model. Groundwater. 2020 `_. #. `\M.R. Sweeney, and J.D. Hyman. Stress effects on flow and transport in three‐dimensional fracture networks. Journal of Geophysical Research: Solid Earth, 125, e2020JB019754. 2020 `_. #. `\J.D. Hyman. Flow Channeling in Fracture Networks: Characterizing the Effect of Density on Preferential Flow Path Formation. Water Resources Research 56.9 (2020): e2020WR027986. `_. #. `\H. Pham, R. Parashar, N. Sund, and K. Pohlmann. Determination of fracture apertures via calibration of three-dimensional discrete-fracture-network models: application to Pahute Mesa, Nevada National Security Site, USA. Hydrogeol J (2020). `_. #. `\S. Srinivasan, D. O’Malley, J. D. Hyman, s. Karra, H. S. Viswanathan, and G. Srinivasan Transient flow modeling in fractured media using graphs. Physical Review E. `_. #. `\S. Srinivasan, D. O’Malley, J. D. Hyman, s. Karra, H. S. Viswanathan, and G. Srinivasan Transient flow modeling in fractured media using graphs. Physical Review E. `_. #. `\P. K. Kang, J. D. Hyman, W. S. Han, & M. Dentz, Anomalous Transport in Three‐Dimensional Discrete Fracture Networks: Interplay between Aperture Heterogeneity and Injection Modes. Water Resources Research, e2020WR027378. `_.