pydfnWorks
python wrapper for dfnWorks
|
Functions | |
def | tpl_cdf (xmin, alpha, x) |
Truncated Power Law Distribution Functions ########. More... | |
def | tpl_pdf (norm_const, xmin, alpha, x) |
def | tpl (alpha, xmin, xmax) |
def | exp_pdf (norm_const, eLambda, x) |
Exponential Distribution Functions ########. More... | |
def | exp_cdf (eLambda, x) |
def | exponential (eLambda, xmin, xmax) |
def | lognormal_cdf (x, mu, sigma) |
Log-Normal Distribution Functions ########. More... | |
def | lognormal_pdf (x, mu, sigma) |
def | lognormal (mu, sigma, xmin, xmax) |
def | create_ecdf (vals) |
:filename: distributions.py :synopsis: Analytic expressions for fracture radii distributions :version: 1.0 :maintainer: Jeffrey Hyman :moduleauthor: Jeffrey Hyman <jhyman@lanl.gov>
def pydfnworks.dfnGen.generation.output_report.distributions.create_ecdf | ( | vals | ) |
Returns the Empirical Cumulative Density function of provided values Parameters ---------- vals : array array of values to be binned Returns ------- x : numpy array sorted input values cdf : numpy array values of the cdf, normalized so cumulative sum = 1 Notes ------ None
Definition at line 271 of file distributions.py.
def pydfnworks.dfnGen.generation.output_report.distributions.exp_cdf | ( | eLambda, | |
x | |||
) |
Returns the analytical values of the CDF of the exponential distribution with exponent eLambda for values of x. Parameters ------------- eLambda : double The exponent of the exponential distribution x : numpy array x-values of the function Returns -------- cdf : numpy array Analytical values of the exponential CDF Notes --------- None
Definition at line 118 of file distributions.py.
Referenced by pydfnworks.dfnGen.generation.output_report.distributions.exponential().
def pydfnworks.dfnGen.generation.output_report.distributions.exp_pdf | ( | norm_const, | |
eLambda, | |||
x | |||
) |
Exponential Distribution Functions ########.
Returns the analytical values of the PDF of the exponential distribution with exponent eLambda for values of x. Parameters ------------- norm_const : double The normalization constant for the PDF eLambda : double The exponent of the exponential distribution x : numpy array x-values of the function Returns -------- pdf : numpy array Analytical values of the power law PDF Notes --------- None
Definition at line 94 of file distributions.py.
Referenced by pydfnworks.dfnGen.generation.output_report.distributions.exponential().
def pydfnworks.dfnGen.generation.output_report.distributions.exponential | ( | eLambda, | |
xmin, | |||
xmax | |||
) |
Returns the PDF and CDF of an exponential distribution with exponent eLambda over the range [xmin,xmax]. Parameters ----------- eLambda : double The exponent of the exponential distribution xmin : double Minimum x-value xmax : double Maximum x-value Returns --------- x : numpy array x-values of the function pdf : numpy array pdf values of the exponential distribution cdf : numpy array cdf values of exponential distribution Notes ------- None
Definition at line 141 of file distributions.py.
References pydfnworks.dfnGen.generation.output_report.distributions.exp_cdf(), and pydfnworks.dfnGen.generation.output_report.distributions.exp_pdf().
def pydfnworks.dfnGen.generation.output_report.distributions.lognormal | ( | mu, | |
sigma, | |||
xmin, | |||
xmax | |||
) |
Returns the PDF and CDF of a LogNormal distribution with parameters mu and sigma over the range [xmin,xmax]. Parameters ----------- mu : double Lognormal distribution parameter #1 sigma : double Lognormal distribution parameter #1 (sigma > 0) xmin : double Minimum x-value xmax : double Maximum x-value Returns --------- x : numpy array x-values of the function pdf : numpy array pdf values of the lognormal distribution cdf : numpy array cdf values of lognormal distribution Notes ------- dfnGen uses the mean and standard deviation of the underlying normal distribution that creates the lognormal distribution. In order to produce a LogNormal distribution with a desired mean (m) and variance (s) one uses mu = ln [ m^2 / sqrt(m^2 + s^2)] and sigma = ln ( 1 + m^2 / s^2) For more details see https://en.wikipedia.org/wiki/Log-normal_distribution
Definition at line 225 of file distributions.py.
References pydfnworks.dfnGen.generation.output_report.distributions.lognormal_cdf(), and pydfnworks.dfnGen.generation.output_report.distributions.lognormal_pdf().
def pydfnworks.dfnGen.generation.output_report.distributions.lognormal_cdf | ( | x, | |
mu, | |||
sigma | |||
) |
Log-Normal Distribution Functions ########.
Returns the analytical values of the CDF of the lognormal distribution with parameters mu and sigma Parameters ------------- x : numpy array x-values of the function mu : double Lognormal distribution parameter #1 sigma : double Lognormal distribution parameter #1 (sigma > 0) Returns -------- cdf : numpy array Analytical values of the CDF for the Log-Normal distribution Notes --------- None
Definition at line 175 of file distributions.py.
Referenced by pydfnworks.dfnGen.generation.output_report.distributions.lognormal().
def pydfnworks.dfnGen.generation.output_report.distributions.lognormal_pdf | ( | x, | |
mu, | |||
sigma | |||
) |
Returns the analytical values of the CDF of the lognormal distribution with parameters mu and sigma Parameters ------------- x : numpy array x-values of the function mu : double Lognormal distribution parameter #1 sigma : double Lognormal distribution parameter #1 (sigma > 0) Returns -------- pdf : numpy array Analytical values of the PDF for the Log-Normal distribution Notes --------- None
Definition at line 199 of file distributions.py.
Referenced by pydfnworks.dfnGen.generation.output_report.distributions.lognormal().
def pydfnworks.dfnGen.generation.output_report.distributions.tpl | ( | alpha, | |
xmin, | |||
xmax | |||
) |
Returns the PDF and CDF of a truncated Power-law distribution with exponent alpha over the range [xmin,xmax]. Parameters ----------- alpha : double The alpha parameter (decay rate / exponent) in the power law distribution. (alpha > 0) xmin : double Minimum x-value xmax : double Maximum x-value Returns --------- x : numpy array x-values of the function pdf : numpy array pdf values of the truncated powerlaw cdf : numpy array cdf values of truncated powerlaw distribution Notes ------- dfnWorks uses the convention of pdf(x) = C x^{-(alpha +1)}, rather than pdf(x) = C x^{-alpha} for a powerlaw.
Definition at line 58 of file distributions.py.
References pydfnworks.dfnGen.generation.output_report.distributions.tpl_cdf(), and pydfnworks.dfnGen.generation.output_report.distributions.tpl_pdf().
def pydfnworks.dfnGen.generation.output_report.distributions.tpl_cdf | ( | xmin, | |
alpha, | |||
x | |||
) |
Truncated Power Law Distribution Functions ########.
Returns the analytical values of the power law CDF with exponent a Parameters -------------- xmin : double The lower bound of the truncated power law distribution. alpha : double The alpha parameter in the power law distribution. x : numpy array x values Returns ---------- cdf : numpy array Analytical values of the power law CDF
Definition at line 14 of file distributions.py.
Referenced by pydfnworks.dfnGen.generation.output_report.distributions.tpl().
def pydfnworks.dfnGen.generation.output_report.distributions.tpl_pdf | ( | norm_const, | |
xmin, | |||
alpha, | |||
x | |||
) |
Returns the analytical power laws PDF values. Parameters -------------- norm_const : double The normalization constant for the PDF xmin : double The lower bound of the truncated power law distribution. alpha : double The alpha parameter (decay rate / exponent) in the power law distribution. x : numpy array x-values of the function Returns -------- pdf : numpy array Analytical values of the power law PDF
Definition at line 35 of file distributions.py.
Referenced by pydfnworks.dfnGen.generation.output_report.distributions.tpl().