dfnWorks Publications

The following are publications that use dfnWorks:

  1. J. D. Hyman, C. W. Gable, S. L. Painter, and N. Makedonska. Conforming Delaunay triangulation of stochastically generated three dimensional discrete fracture networks: A feature rejection algorithm for meshing strategy. SIAM J. Sci. Comput. (2014).

  2. R.S. Middleton, J.W. Carey, R.P. Currier, J. D. Hyman, Q. Kang, S. Karra, J. Jimenez-Martınez, M.L. Porter, and H.S. Viswanathan. Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2. Applied Energy, (2015).

  3. J. D. Hyman, S. L. Painter, H. Viswanathan, N. Makedonska, and S. Karra. Influence of injection mode on transport properties in kilometer-scale three-dimensional discrete fracture networks. Water Resources Research (2015).

  4. S. Karra, Nataliia Makedonska, Hari S Viswanathan, Scott L Painter, and Jeffrey D. Hyman. Effect of advective flow in fractures and matrix diffusion on natural gas production. Water Resources Research (2015).

  5. J. D. Hyman, S. Karra, N. Makedonska, C. W Gable, S. L Painter, and H. S Viswanathan. dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport. Computers & Geosciences (2015).

  6. H. S. Viswanathan, J. D. Hyman, S. Karra, J.W. Carey, M. L. Porter, E. Rougier, R. P. Currier,Q. Kang, L. Zhou, J. Jimenez-Martınez, N. Makedonska, L. Chen, and R. S. Middleton. Using Discovery Science To Increase Efficiency of Hydraulic Fracturing While Reducing Water Usage, chapter 4, pages 71–88. ACS Publications, (2016).

  7. N. Makedonska, S. L Painter, Q. M Bui, C. W Gable, and S. Karra. Particle tracking approach for transport in three-dimensional discrete fracture networks. Computational Geosciences (2015).

  8. D. O’Malley, S. Karra, R. P. Currier, N. Makedonska, J. D. Hyman, and H. S. Viswanathan. Where does water go during hydraulic fracturing? Groundwater (2016).

  9. J. D. Hyman, J Jiménez-Martínez, HS Viswanathan, JW Carey, ML Porter, E Rougier, S Karra, Q Kang, L Frash, L Chen, et al. Understanding hydraulic fracturing: a multi-scale problem. Phil. Trans. R. Soc. A, (2016).

  10. G. Aldrich, J. D. Hyman, S. Karra, C. W. Gable, N. Makedonska, H. Viswanathan, J.Woodring, and B. Hamann. Analysis and visualization of discrete fracture networks using a flow topology graph. IEEE Transactions on Visualization and Computer Graphics (2017).

  11. N. Makedonska, J. D. Hyman, S. Karra, S. L. Painter, C.W. Gable, and H. S. Viswanathan. Evaluating the effect of internal aperture variability on transport in kilometer scale discrete fracture networks. Advances in Water Resources (2016).

  12. J. D. Hyman, G. Aldrich, H. Viswanathan, N. Makedonska, and S. Karra. Fracture size and transmissivity correlations: Implications for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of fracture size. Water Resources Research (2016).

  13. H. Djidjev, D. O’Malley, H. Viswanathan, J. D. Hyman, S. Karra, and G. Srinivasan. Learning on graphs for predictions of fracture propagation, flow and transport. In 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (2017).

  14. J. D. Hyman, A. Hagberg, G. Srinivasan, J. Mohd-Yusof, and H. Viswanathan. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions. Phys. Rev. E, 96:013304, Jul.

  15. T Hadgu, S. Karra, N. Makedonska, J. D. Hyman, K. Klise, H. S. Viswanathan, and Y.Wang. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock. J. Hydrology, 2017.

  16. V. Romano, J. D. Hyman, S. Karra, A. J. Valocchi, M. Battaglia, and S. Bigi. Numerical modeling of fluid flow in a fault zone: a case of study from majella mountain (Italy). Energy Procedia, 125:556 – 560, 2017.

  17. M. Valera, Z. Guo, P. Kelly, S. Matz, A. Cantu, A.G. Percus, J. D. Hyman, G. Srinivasan, and H.S. Viswanathan. Machine learning for graph-based representations of three-dimensional discrete fracture networks. Computational Geosciences, (2018).

  18. M. K. Mudunuru, S. Karra, N. Makedonska, and T. Chen. Sequential geophysical and flow inversion to characterize fracture networks in subsurface systems. Statistical Analysis and Data Mining: The ASA Data Science Journal (2017).

  19. J. D. Hyman, Satish Karra, J. William Carey, Carl W. Gable, Hari Viswanathan, Esteban Rougier, and Zhou Lei. Discontinuities in effective permeability due to fracture percolation. Mechanics of Materials (2018).

  20. S. Karra, D. O’Malley, J. D. Hyman, H.S. Viswanathan, and G. Srinivasan. Modeling flow and transport in fracture networks using graphs. Phys. Rev. E, (2018).

  21. J. D. Hyman and J. Jimenéz-Martínez. Dispersion and mixing in three-dimensional discrete fracture networks: Nonlinear interplay between structural and hydraulic heterogeneity. Water Resources Research (2018).

  22. D. O’Malley, S. Karra, J. D. Hyman, H. Viswanathan, and G. Srinivasan. Efficient Monte Carlo with graph-based subsurface flow and transport models. Water Resour. Res., (2018).

  23. G. Srinivasan, J. D. Hyman, D. Osthus, B. Moore, D. O’Malley, S. Karra, E Rougier, A. Hagberg, A. Hunter, and H. S. Viswanathan. Quantifying topological uncertainty in fractured systems using graph theory and machine learning. Scientific Reports, (2018).

  24. H. S. Viswanathan, J. D. Hyman, S. Karra, D. O’Malley, S. Srinivasan, A. Hagberg, and G. Srinivasan. Advancing graph-based algorithms for predicting flow and transport in fractured rock. Water Resour. Res., (2018).

  25. S. Srinivasan, J. D. Hyman, S. Karra, D. O’Malley, H. Viswanathan, and G. Srinivasan. Robust system size reduction of discrete fracture networks: A multi-fidelity method that preserves transport characteristics. Computational Geosciences, 2018.

  26. J. D. Hyman, Aric Hagberg, Dave Osthus, Shriram Srinivasan, Hari Viswanathan, and Gowri Srinivasan. Identifying backbones in three-dimensional discrete fracture net- works: A bipartite graph-based approach. Multiscale Modeling & Simulation (2018).

  27. G. Aldrich, J. Lukasczyk, J. D. Hyman, G. Srinivasan, H. Viswanathan, C. Garth, H. Leitte, J. Ahrens, and B. Hamann. A query-based framework for searching, sorting, and exploring data ensembles. Computing in Science Engineering, (2018).

  28. T. Sherman, J. D. Hyman, D. Bolster, N. Makedonska, and G. Srinivasan. Characterizing the impact of particle behavior at fracture intersections in three-dimensional discrete fracture networks. Physical Review E (2019).

  29. J. D. Hyman, M. Dentz, A. Hagberg, and P. Kang. Linking structural and transport properties in three-dimensional fracture networks. J. Geophys. Res. Sol. Ea., (2019).

  30. S. Srinivasan, S. Karra, J. D. Hyman, H. Viswanathan, and G. Srinivasan. Model reduction for fractured porous media: A machine-learning approach for identifying main flow pathways. Computational Geosciences (2018).

  31. N. Makedonska, J.D, Hyman, E. Kwicklis, K. Birdsell, Conference Proceedings, Discrete Fracture Network Modeling and Simulation of Subsurface Transport for the Topopah Spring Aquifer at Pahute Mesa, 2nd International Discrete Fracture Network Engineering (2018).

  32. N. Makedonska, C.W. Gable, R. Pawar, Conference Proceedings, Merging Discrete Fracture Network Meshes With 3D Continuum Meshes of Rock Matrix: A Novel Approach, 2nd International Discrete Fracture Network Engineering (2018).

  33. A. Frampton, J.D, Hyman, L. Zou, Advective transport in discrete fracture networks with connected and disconnected textures representing internal aperture variability, Water Resources Research (2019).

  34. J.D. Hyman, J. Jiménez-Martínez, C. W. Gable, P. H. Stauffer, and R. J. Pawar. Characterizing the Impact of Fractured Caprock Heterogeneity on Supercritical CO2 Injection. Transport in Porous Media (2019).

  35. J.D. Hyman, H. Rajaram, S. Srinivasan, N. Makedonska, S. Karra, H. Viswanathan, H., & G. Srinivasan, (2019). Matrix diffusion in fractured media: New insights into power law scaling of breakthrough curves. Geophysical Research Letters (2019).

  36. J.D. Hyman, M. Dentz, A. Hagberg, & P. K. Kang, (2019). Emergence of Stable Laws for First Passage Times in Three-Dimensional Random Fracture Networks. Physical Review Letters (2019).

  37. M. R. Sweeney, C. W. Gable, S. Karra, P. H. Stauffer, R. J. Pawar, J. D. Hyman (2019). Upscaled discrete fracture matrix model (UDFM): an octree-refined continuum representation of fractured porous mediaComputational Geosciences (2019).

  38. T. Sherman, J. D. Hyman, M. Dentz, and D. Bolster. Characterizing the influence of fracture density on network scale transport. J. Geophys. Res. Sol. Ea., (2019).

  39. D. Osthus, J. D. Hyman, S. Karra, N. Panda, and G. Srinivasan. A probabilistic clustering approach for identifying primary subnetworks of discrete fracture networks with quantified uncertainty. SIAM/ASA Journal on Uncertainty Quantification, (2020).

  40. V. Romano, S. Bigi, F. Carnevale, J. D. Hyman, S. Karra, A. Valocchi, M. Tartarello, and M. Battaglia. Hydraulic characterization of a fault zone from fracture distribution. Journal of Structural Geology, (2020).

  41. S. Srinivasan, E. Cawi, J. D. Hyman, D. Osthus, A. Hagberg, H. Viswanathan, and G. Srinivasan. Physics-informed machine-learning for backbone identification in discrete fracture networks. Comput. Geosci., (2020).

  42. N. Makedonska, S. Karra, H.S. Viswanathan, and G.D. Guthrie,. Role of Interaction between Hydraulic and Natural Fractures on Production. Journal of Natural Gas Science and Engineering (2020)..

  43. H. Pham, R. Parashar, N. Sund, and K. Pohlmann. A Method to Represent a Well in a Three‐dimensional Discrete Fracture Network Model. Groundwater. (2020).

  44. M.R. Sweeney, and J.D. Hyman. Stress effects on flow and transport in three‐dimensional fracture networks. Journal of Geophysical Research: Solid Earth. (2020).

  45. J.D. Hyman. Flow Channeling in Fracture Networks: Characterizing the Effect of Density on Preferential Flow Path Formation. Water Resources Research (2020): e2020WR027986..

  46. H. Pham, R. Parashar, N. Sund, and K. Pohlmann. Determination of fracture apertures via calibration of three-dimensional discrete-fracture-network models: application to Pahute Mesa, Nevada National Security Site, USA. Hydrogeol J (2020)..

  47. S. Srinivasan, D. O’Malley, J. D. Hyman, s. Karra, H. S. Viswanathan, and G. Srinivasan Transient flow modeling in fractured media using graphs. (2020) Physical Review E..

  48. Liangchao Zou and Vladimir Cvetkovic. Inference of Transmissivity in Crystalline Rock Using Flow Logs Under Steady‐State Pumping: Impact of Multiscale Heterogeneity. Water Resources Research (2020).

  49. P. K. Kang, J. D. Hyman, W. S. Han, & M. Dentz, Anomalous Transport in Three‐Dimensional Discrete Fracture Networks: Interplay between Aperture Heterogeneity and Injection Modes. Water Resources Research (2020).

  50. Hyman, J. D., & Dentz, M. Transport upscaling under flow heterogeneity and matrix-diffusion in three-dimensional discrete fracture networks. Advances in Water Resources (2021).

  51. T. Sherman, G. Sole-Mari, J. Hyman, M. R. Sweeney, D. Vassallo, and D. Bolster. Characterizing Reactive Transport Behavior in a Three-Dimensional Discrete Fracture Network. Transport in Porous Media (2021).

  52. S. Shriram, D. O’Malley, M. K. Mudunuru, M. R. Sweeney, J. D. Hyman, S. Karra, L. Frash et al. A machine learning framework for rapid forecasting and history matching in unconventional reservoirs. (2021) Scientific Reports.

  53. J. D. Hyman, M. R. Sweeney, L. P. Frash, J. W. Carey, and H. S. Viswanathan. Scale‐Bridging in Three‐Dimensional Fracture Networks: Characterizing the Effects of Variable Fracture Apertures on Network‐Scale Flow Channelization. Geophysical Research Letters (2021).

  54. Liangchao Zou and Vladimir Cvetkovic. Evaluation of Flow‐Log Data From Crystalline Rocks With Steady‐State Pumping and Ambient Flow. Geophysical Research Letters (2021).

  55. H. Ushijima-Mwesigwa, J. D. Hyman, A. Hagberg, I. Safro, S. Karra, C. W. Gable, M. R. Sweeney, and G. Srinivasan. Multilevel graph partitioning for three-dimensional discrete fracture network flow simulations. Mathematical Geosciences (2021).

  56. Yingtao Hu, Wenjie Xu, Liangtong Zhan, Liangchao Zou, and Yunmin Chen. “Modeling of solute transport in a fracture-matrix system with a three-dimensional discrete fracture network.” Journal of Hydrology (2021).

  57. C. R. Romano, R. T. Williams; Evolution of Fault-Zone Hydromechanical Properties in Response to Different Cementation Processes. Lithosphere (2022).

  58. J. Krotz, M.R. Sweeney, C.W. Gable, J.D. Hyman, & J.M. Restrepo, (2022). Variable resolution Poisson-disk sampling for meshing discrete fracture networks. Journal of Computational and Applied Mathematics (2022).